Using the metal content of galaxies to inform stellar feedback modeling **UNIVERSITY** of VIRGINIA

Image: TNG Collaboration

Alex Garcia

Vogelsberger Group Meeting 11/03/2023

Modeling stellar feedback in simulations

Gentle Feedback

Video: TNG Collaboration

Metallicity gradients Are there observable ways to distinguish the two? Interplay of stellar and gas-phase metallicities

Are there observable ways to distinguish the two?

1. Metallicity gradients: Hemler+21 and Garcia+23 2. Interplay of stellar and gas-phase metallicities

Gas-phase Metallicity Gradients Observations

Predominately negative gradients at low redshift

Higher redshifts (z~0.6-3)

• Wide variety of gradients

Grasha+2022

Gas-phase Metallicity Gradients Simulations

Hemler+2021

Extended metallicity profiles **Profile flattening**

Kewley+, incl. Garcia(In Prep)

Garcia+2023

Why do metallicity profiles "break"?

What sets a gradient?

Enrichment vs Mixing

Ratio of Timescales ~1/10 at location of the break

Garcia+2023

Where is this in the disk?

Garcia+2023

What gradients tell us about feedback models

Gentle Feedback

No mechanism to catastrophically destroy gradients

Mixing takes a long time

Strength of gradients

Bursty Feedback

Washes out metallicity gradients very quickly

Allows re-growth of the gradients

Time variation of breaks

Are there observable ways to distinguish the two feedback models?

Metallicity gradients
Interplay of stellar and

2. Interplay of stellar and gas-phase metallicities

Are there observable ways to distinguish the two feedback models?

1. Metallicity gradients

2. Interplay of stellar and Garcia+(Submitted)

"Alex, I don't have disk space for all that particle data!"

2. Interplay of stellar and gas-phase metallicities:

Mass-Metallicity Relation Correlated scatter with Gas-phase metals

Bothwell+2013

Torrey+2019

Physics behind correlated scatter

On global scales

Increased pristine gas content:

- Decreases the metallicity
- SFR increases! (Ellison+2008)

Stellar metallicities are not *directly* impacted by gas accretion!

So what do the stellar metallicities do?

We find evidence for an analogous residual correlation for stellar metallicities

Garcia+(Submitted)

Where does this residual correlation originate?

Though not *directly* influenced, stars will feel the effects of gas accretion over time

A galaxy's offset from both the stellar MZR and gas-phase MZR are correlated

The more tightly correlated stellar and gas-phase metals are: the steeper the relationship

Garcia+(Submitted)

Tightness of correlation **More timescales!**

Coherence timescale -> timescale on which gas-phase metals change

Star formation timescale -> timescale on which gas makes new stars

BUT! This (likely) depends on the model

Gentle Feedback Implicitly assumed Allow system to respond

Bursty Feedback

Bursts likely interrupt/stop processes!

Are there observable ways to distinguish between feedback models?

Spatially Resolved Scales

- Strength of metallicity gradients
- Time variation of spatial extent (break) of gradients

Global Scales

- Correlations within scatter within stellar mass-stellar metallicity relation
- Strength of relationship between gas and stellar metallicities